Insight into the catalytic mechanism of DNA polymerase beta: structures of intermediate complexes.
نویسندگان
چکیده
The catalytic reaction mediated by DNA polymerases is known to require two Mg(II) ions, one associated with dNTP binding and the other involved in metal ion catalysis of the chemical step. Here we report a functional intermediate structure of a DNA polymerase with only one metal ion bound, the DNA polymerase beta-DNA template-primer-chromium(III).2'-deoxythymidine 5'-beta,gamma-methylenetriphosphate [Cr(III).dTMPPCP] complex, at 2.6 A resolution. The complex is distinct from the structures of other polymerase-DNA-ddNTP complexes in that the 3'-terminus of the primer has a free hydroxyl group. Hence, this structure represents a fully functional intermediate state. Support for this contention is provided by the observation of turnover in biochemical assays of crystallized protein as well as from the determination that soaking Pol beta crystals with Mn(II) ions leads to formation of the product complex, Pol beta-DNA-Cr(III).PCP, whose structure is also reported. An important feature of both structures is that the fingers subdomain is closed, similar to structures of other ternary complexes in which both metal ion sites are occupied. These results suggest that closing of the fingers subdomain is induced specifically by binding of the metal-dNTP complex prior to binding of the catalytic Mg(2+) ion. This has led us to reevaluate our previous evidence regarding the existence of a rate-limiting conformational change in Pol beta's reaction pathway. The results of stopped-flow studies suggest that there is no detectable rate-limiting conformational change step.
منابع مشابه
Crystal structures of a template-independent DNA polymerase: murine terminal deoxynucleotidyltransferase.
The crystal structure of the catalytic core of murine terminal deoxynucleotidyltransferase (TdT) at 2.35 A resolution reveals a typical DNA polymerase beta-like fold locked in a closed form. In addition, the structures of two different binary complexes, one with an oligonucleotide primer and the other with an incoming ddATP-Co(2+) complex, show that the substrates and the two divalent ions in t...
متن کاملDNA strand specificity in promoter recognition by RNA polymerase.
DNA strand and enzyme subunit specificities involved in the interaction between E. coli RNA polymerase and T7 DNA were studied by photo-crosslinking techniques. In non-specific enzyme-DNA complexes, subunits, sigma, beta, and beta' were crosslinked to both strands of the DNA. Under conditions leading to specific enzyme-promoter complexes, however, only sigma and beta subunits were crosslinked. ...
متن کاملDetection of Somatic Mutation in Exon 12 of DNA Polymerase β in Ovarian Cancer Tissue Samples
Background: DNA polymerase β (pol β) is a key enzyme of base excision repair pathway. It is a 1-kb gene consisting of 14 exons. Its catalytic part lies between exon 8 and exon 14. Exon 12 has a role in deoxyribonucleotide triphosphate selection for nucleotide transferase activity. Methods: Genomic DNA was isolated from ovarian carcinoma samples. Single strand conformation polymorphism...
متن کاملQuantum Mechanical Approach for the Catalytic Mechanism of Dinuclear Zinc Metallo-β-lactamase by Penicillin and Cephalexin: Kinetic and Thermodynamic Points of View
Metallo-β-lactamases (MβL) catalyzing the hydrolytic cleavage of the four-membered β-lactam ring in broad spectrum of antibiotics and therefore inactivating the drug; However, the mechanism of these enzymes is still not well understood. Electronic structure and electronic energy of metallo-β-lactamase active center, two inhibitors of this enzyme including penicillin and cephalexin, and differen...
متن کاملMolecular Dynamics Study of the Opening Mechanism for DNA Polymerase I
During DNA replication, DNA polymerases follow an induced fit mechanism in order to rapidly distinguish between correct and incorrect dNTP substrates. The dynamics of this process are crucial to the overall effectiveness of catalysis. Although X-ray crystal structures of DNA polymerase I with substrate dNTPs have revealed key structural states along the catalytic pathway, solution fluorescence ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 40 18 شماره
صفحات -
تاریخ انتشار 2001